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Natural Lagrangian systems simulating mechanisms with a kinematic tree structure are considered. Sufficient conditions are 
presented for global controllability, that is, for the possibility that an admissible input signal will steer the system, in a finite time, 
from any initial phase state to any specified state. For example, it is shown that a multi-segment pendulum in a horizontal plane 
(outside the gravitational field) is globally controllable by the sole action of a bounded external torque applied to the first segment. 
© 1998 Elsevier Science Ltd. All fights reserved. 

Necessary and sufficient conditions for the controllability of linear systems are well known [1]. In the 
non-linear case, however, such properties can obviously only be evaluated by using the specific features 
of particular classes of objects. 

Sufficient conditions have been obtained [2] for the global controllability (i.e. controllability in the 
entire phase space) of natural Lagrangian systems characterized by strong interaction of the segments, 
when partial dissipation (e.g. due to friction in a joint) could stabilize the entire system in a single stable 
equilibrium position. 

Below the list of globally controllable objects will be extended to include certain systems of rigid bodies 
that admit of steady motions. 

1. B A S I C  D E F I N I T I O N S  

Following [2], we consider natural Lagrangian systems, i.e. objects whose Lagrangian is syrrLm_ etric 
with respect to time inversion t --~ -t: L(q,  q') = 1/2q "r A(q)q" - B(q) where q = (ql . . . . .  qn)r is the 
configuration vector, A(q) is the (positive-definite) inertia matrix, and B(q)  is a scalar potential, which 
has a lower bound: B(q)  ~ O, B(0) = 0. The motion is described by the equation 

~'t~-~'q. J -  ~-~-q = u, u E U c  R" (1.1) 

where u = (Ul . . . .  , Un) r is a vector of controls chosen from a prescribed bounded domain U containing 
u = 0 as an interior point. 

In free motion (u - 0) the energy integral of the system E(q, q') = 1/2qrA(q)q" + B(q) may be a 
periodic function of  certain "angular" coordinates qi (i = 1, 2, . . . ,  r). They are chosen in a covering 
space R r X R ('-') corresponding to the configuration space M = T'  x R fn-+), where T r is an r-dimensional 
toms. We will use the notation q ~ M. The phase space TM = T'  x R (z~') is defined similarly, so that 
(q, q') ~ TM. 

If the feedback u = u(q, q') is associated with a scparatrix surface in TM, in which motion to a singular 
point takes place in infinite time, the surface is denoted by £2(u(q, q'). The set of equilibrium positions 

= {(q, q'): q '=  0, OB/Oq = 0, u = 0} is non-empty, the number of components of these manifolds is 
assumed to be finite. 

For any scalar function V(y), we let Qr, = {y:ll 3 V / ~  II = 0} denote the set of critical points, E v  = 
{c: c = V(y)} the value set and Hc(V(y)) = {y: V(y) <- c, c ~ Er,} the domains bounded by the level 
surfaces of the function. 

The definitions of stabilizability and controllability will be used in the traditional sense [3]. 

Definition 1. System (1.1) is said to be stabilizable on P c TM by inputs ui (i = 1, 2 . . . . .  n) if it can 
be steered from any point (q, q') e P into an arbitrarily small neighbourhood of the state (0, 0) on the 
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assumption that uj - 0 ( j  = m + 1, m + 2 , . . . ,  n). 
A special case of this definition is stabilizability by a scalar (single) input ui (i = 1, 2 . . . . .  n). 

Definition 2. System (1.1) is said to be locally controllable by inputs ui (i = 1, 2 . . . . .  m) in a 
neighbourhood of an equilibrium (q0, 0) ~ T M  if (q0, 0) in a finite time by an admissible control, on 
the assumption that uk -- 0 (k = m + 1, m + 2 , . . . ,  n). 

It is well known [3] that it is sufficient to observe local controllability in the linear approximation, 
applying the rank criterion of [1]. 

Definition 3. System (1.1) is said to be globally controllable in T M  by inputs ui (i = 1, 2 , . . . ,  m) if it 
can be steered from an arbitrary state (ql, q'l) to any prescribed state (q2, q'2) in a finite time by admissible 
controls, on the assumption that Uk ---- 0 (k = m + 1, m + 2 . . . .  , n). 

The sufficient conditions formulated in [2] for global controllability of objects (1.1) when the number of controls 
is less than the number of degrees of freedom were based on the properties of stabilizability, local controllability 
of systems and their symmetry relative to time inversion. Stabilizability was proved by appeal to Lyapunov's direct 
method in stability theory. The well-known Barbashin-Krasovskii theorem [4] was extended to the case of a 
cylindrical phase space [5] by introducing a new concept--the connected Lyapunov function. 

Definition 4. A single-valued function V(y) (y ~ T ~ x R ~) which is continuous together with its partial 
derivatives and positive-definite in Lyapunov's sense (V(y)/> 0, V(y) = 0 ~ y = 0) is called a Lyapunov 
function on T ~ x R ~. 

Definition 5. A Lyapunov function V(y) (y e T ~ x R ~) is called a connected Lyapunov function (CLF) 
in a domain P C T ~ x / ~  if every set P N Hc (V(y)) is connected in P. 

Various sufficient conditions for a Lyapunov function to be connected have been proved [5]. One of 
these may be formulated as follows: if the set QrA0 for a Lyapunov function V(y) (y ~ P), defined on a 
compact manifold P C T ~ x / ~ ,  is the union of a finite number of isolated points, at each of which the 
matrix 32V/~gy 2 is not positive-definite, then V(y) is a CLF on P. In other words, if the function V(y) is 
not degenerate on a compact set P (that is, it is a Morse function [6]) and has only one local minimum 
(at the point y = 0), then V(y) is a C L F  on P. 

Example 1. A system of n rigid rods, joined together in sequence by cylindrical joints, is situated in a vertical 
plane (Fig. 1). All the angles 9/(i = 1, 2 . . . . .  n) measure the deviation of the segments of the pendulum from the 
vertical axis, and the point of suspension is fixed. We will assume that the rods themselves are weightless, their 
masses being concentrated at the joints. The potential energy B(tp) = Y-.,bi(1 - c o s  qoi) , where b i > 0 ( i  = 1 ,  2 . . . . .  
n), is a CLF on/~. 

We will present one result of [2] in a simplified form, confining our attention to the case of a one-dimensional 
control. 

Proposition 1. Suppose that the potential B(q) in system (1.1) is a C L F  on M and that the sets Hc(B(q)) 
are compact. 

ma un 

Fig. 1. 
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1. If the system in free motion (u ~- 0) does not admit of the particular solution q" ---- 0 (excluding 
equilibria), then it is stabilizable by input uj (j = 1, 2 , . . . ,  n) on the manifold T M ~ ' ( u j ) .  

2. Under  these conditions, if the system is locally controllable in the neighbourhoods of  all points 
(q0, 0) e ~ by the same input uj, then system (1.1) is globally controllable by the single control uj. 

The properties of the potential B(q) enables us to analyse asymptotic stability in the large [5] by using the CLF 
E(q, q')--the total energy of the system. The role of the other conditions in the proposition is as follows: 

1. the smooth feedback uj(q, q') e U (chosen so that sign uj = -sign fly) guarantees that a sufficiently small 
neighbourhood of one of the rest points (q0, 0) e ~ is reached in a finite time; 

2. if q0 ~ 0, local controllability enables one to "overcome jamming in the neighbourhood" (i.e. to complete the 
motion in the domain T M ~ ( u j )  at a lower energy level) and to continue the stabilization of uj(q, q'). But if 
q = 0, local controllability guarantees that the point (0, 0) will be reached in a finite time. 

The following remark completes the logical chain of Proposition 1. 

Remark. If an admissible control uj will steer the Lagrangian system (1.1) in a finite time from any initial state 
(ql, q'l) e TM to the position (0, 0), then the system is globally controllable by the input uj (j = 1, 2 . . . . .  n). 

Indeed, Eqs (1.1) are invariant under the transformation ff ~ -q', t ~ -t, any controllable process uj(t): (q2, if2) 
(0, 0) (as t ---> [0, T]) can be associated in the same interval of t  with a "symmetric" motion uj(T - t): (0, 0) 

(qz q2), and we can thus construct a stepwise transition (ql, if1) ---> (0, 0) ---> (q2, q'2). 
For Example 1, the proposition implies that the n-segment pendulum is globally controllable in a vertical plane 

(with friction) by a single bounded torque [unl <<- an applied to the last joint, that is to say, the object may be brought 
[2], say, from its lowest position of equilibrium to the unstable upper position of equilibrium in a limited time, by 
as small a torque u n as desired. 

2. S Y S T E M S  W I T H  S T E A D Y  M O T I O N S  

The sufficient conditions for global controllability used in Proposition 1 are applicable to objects "with 
strong inter-segmental interactions," when partial dissipation (e.g. owing to friction in one of the joints) 
may stabilize the entire system, i.e. bring it to as small a neighbourhood of the set ~0 of  rest states as 
desired. 

In the examples considered below, the sufficient conditions will not be satisfied (in part 1), but the 
systems will be globally controllable. Their  special feature is the presence of steady motions when the 
system rotates around a stationary axis as a rigid body. Due to the fact that such a state can be approached 
asymptotically and that the system is locally controllable in the neighbourhood of that state with the 
available controls, the object can be steered from any initial state to any desired position relative to 
the rest state, given the value of the angular velocity and the angle of rotation of the whole object. In 
view of  the symmetry with respect to time inversion (t --> -t),  this implies global controllability. 

Example 2. A system with two degrees of freedom (Fig. 2) is situated in a revolving vertical plane in a gravitational 
field. Weightless rods of length ll and 12 are joined together by cylindrical frictionless joints. Masses ml and m2 are 
concentrated at the joints. The bounded control I Ul I ~< a is an external torque applied to the first rod. The angle 
tp is measured in the horizontal plane and the angle ¥ is measured from the vertical. 

The system does not satisfy the conditions of Proposition 1, since particular solutions tp" -= 0 with ¥" ~ 0 exist. 
Using dimensionless parameters x = ml/m2, ~t = ll/12, u = ul/(m2gl2) and time x = r4(g/12), we obtain the reduced 

Lagrangian 

Fig. 2. 
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L = 1~9"2[~ix2 +(ix+sinv)2]+ I ~  "2 - B(V), BCV) = l -cos~t  

and the equations of  motion are 

9"" [xl -t2 + (~ + sin ~)2 ] + 29. ~ .  cos ~(ILt + sin V) = u 

V'" - 9  .2 cosv(g  +sin ¥ ) + s i n v  = 0 

When u - O, the system admits of a steady rotation ~p" = to, ¥" = O, ¥ = ¥0, with the quantities to and ¥0 related 
by the formula 

to2 = sin ~o/[cos ¥o(g + sin ~o)] (2.1) 

We introduce variables ), = 9 - tot, 13 = ~ - V0 and a vector x = (y', 13, ¥.)r. In the linear approximation in the 
neighbourhood of the state x = O, the system is 

c 2 - c 3 

c 1 =xl.t 2 + ( g + s i n v 0 )  2 >0, c 2 =2 tocos¥0( ix+s inv0)~0  

c3 = to2 (Ix +sin 3 ~/0) / sin ~0 

Since detll b, Gb, G2b II = -c2/c3~ ¢ O, the system is locally controllable by the input u in the neighbourhood of 
the relative position of rest 9" = to, ¥" = 0, V = V0. 

For this value of to, Eq. (2.1) has two roots, one of which satisfies the condition 0 < ~0 < ~/2. 
We shall show that the system can be brought from any initial state to the e-neighbourhood of the manifold 

9" = to, • = V0, V" = 0 in a finite time. 
Using the artificial potential 

BI (¥)  = l - - c o s y -  I/~002 [~IX 2 +(g  +sin~) 2 ] 

we obtain a Lyapunov function 

V(x) = ~ y ' 2  {xg2 + [Ix + sin(13 + Vo)]2 } + 1/2 V.2 + B! ([3 + Wo)-  Bt (Vo) 

whose derivative along a trajectory is V" = w/'. Choosing an admissible control u to satisfy the condition sign u 
= -sign % we obtain V" ~< 0, V" ;~ 0 (excluding states of relative rest). By Proposition 1, this implies that the 
system is stabilizable by input u on the manifold TM2W~(u), where x ~ TM2, since V(x) is a CLF on TM2. 

Possible "jamming" of  the system about unstable states of relative rest (on fl(u)) may be overcome due to local 
controllability, which also guarantees that the state x = 0 will be reached in a finite time. 

Thus, this two-segmented system may be steered from any initial condition (91, 9"1, ~1, ~'1) to a state of steady 
rotation 9" =- to, V -= ¥0, ~" --- 0. Since the angle 9(t) varies uniformly in such a state, the system will periodically 
reach, say, the state (0, to, ~0, 0). 

We shall show that the system can be steered from this state to the point (0, 0, 0, 0) by an admissible control. 
Indeed, by changing the "purposeful" direction of rotation to, the system could have been steered from any initial 

position to the state (0, -to, ¥0,0), including from the point (0, 0, 0, 0). Due to the symmetry of  system (1.1) relative 
to time inversion t ~ -t, the existence of the controllable process u(t): (0, 0, 0, 0) --> (0, -to, ¥0, 0) (for t ~ [0, T]) 
guarantees the existence of a "symmetrical" trajectory of motion u(T-  t): (0, to, V0, 0) ~ (0, 0, 0, 0). This means 
that there is a possible stepwise process (gb 9"1, V1, V'I) --> (0, to, V0, 0) --> (0, 0, 0, 0) from any initial position. 

Thus, in view of the remark at the end of Section 1, the system of Fig. 2 is globally controllable through the 
action of a single torque Ul, bounded by any previously given quantity a. 

3. T H E  C A S E  O F  n D E G R E E S  O F  F R E E D O M  

We will now extend the logic o f  the previous a rguments  to a more  general  case. 
Let  us assume that  the coord ina te  ql = ~ in the system of  rigid bodies  (1.1) is cyclic, that  is, q = 

(¢~, tilT) T, 11/ E M1 = T (r-l) × R (n-r), L = 1/2 q'TA(~)q" - B ( ~ )  and also that  u = (u a, 0 . . . . .  0) T 
Suppose  that  the system admits  o f  a mot ion  u = 0, qY = to, ~" = 0, that  is, ro ta t ion  as a single rigid 

body. The  configurat ion V in a posit ion o f  relative rest makes  the reduced potent ia l  

B1 ( # )  = B ( # )  - N ~ 2 a ,  i (~ )  + c (3.1) 
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(allowing for translational inertial forces) take an extremal value. The element art of  the matr ixA(¥)  
determines the moment  of inertia of  the entire "rigid" system about the axis of  rotation. 

Let us consider the case in which the function B1(¥) has a unique isolated minimum at a fixed 
value of  to. One can then choose a constant c and assume that the vector ¥ is such that Bt(to) ~> 0, 
B (0) = 0. 

Define a vector 

X = ( T  o, toT, to°T)T ~R×TMI ' T=tO_tot 

The manifold R x TM1 contains a non-empty set of states of relative rest 

g ,={x:  T ' = 0 ,  OB,/Oto=0, t o ' = 0 ,  u = 0 }  

The total energy may be expressed as 

E(q,  q ' )  = T(x)  + top - ~ to2al i (to) + B(to) 

n 

p= Ealiq, ' T(x)=~(T. , to .T)A(to)(7. ,  to.r)r  
i=1 

wherep is the angular momentum of  the system of bodies about its axis of rotation and T(x) is a positive- 
definite form. For the derivatives along trajectories of the vector field E" = q'ru, p" = ut, and we therefore 
obtain for the CLF V(x) = T(x) + BI(to) the equality V" = Y'ul. Thus the conditions of Proposition 1 
are satisfied, but not for R x TM~. 

Due to stabilizability by input ut in relative motion and local controllability in all neighbourhoods 
of states of relative rest, the point x = 0 is reachable in a finite time. As a result, the system can be 
steered from any initial state (to1, to~, tot1, to'l r) to a state of steady rotation to" --- to, where to --- 0, 
to" - 0 and the value of  the angle tO vanishes periodically. 

Hence it follows (by reasoning analogous to that in Example 2) that a controllable process ul(t): 
(0, 0, 0, 0) -~ (0, -to, 0, 0) (for t ~ [0, 7]) exists, and hence also a "symmetrical" motion ul(T - O: 
(0, to, 0, 0) --> (0, 0, 0, 0) (for t e [0, T]). Thus, a stepwise transition from any initial state (tO1, tOi, to'l, 
toi') --> (0, to, 0, 0) --> (0, 0, 0, 0) exists. By the Remark at the end of Section 1, this guarantees that 
system (1.1) is globally controllable by a single torque Ul. We have thus proved the following proposition. 

Proposition 2. Suppose that system (1.1) admits of a motion u ---- 0, to" = to, to" = 0, where q = 
(to, to,)r, tO ~ M1. Assume in addition that the reduced potential B1(¥) in the form (3.1) is a CLF on 
M1 and that the sets Hc(BI(¥)) are com0act. Then 

1. if in the relative motion x = (y ,  tot, to.r)T (where x e R x TM1, 7" - to) with u = 0 there are no 
particular solutions 7" --- 0 in system (1.1) (except for states of relative rest x e ~1), then the system is 
stabilizable by input Ul in the domain R x TMI~f~(ul); 

2. if, in addition, in the neighbourhoods of  states x e ~1 system (1.1) is locally controllable by input 
ul, then the system is globally controllable by input ul on TM1. 

Example 3. Consider an n-segment pendulum (Fig. 3) in a horizontal plane. This example differs from Example 
1 in that now the system is "outside the gravitational field". Again, there is no friction, and a single bounded external 
torque I ul I a is applied to the first segment. Here B(q) =- 0, and therefore the mechanism may be in equilibrium 

T in any configuration q = (Cpl, q~2 . . . . .  ~n) , where 9i are the angles between the rods and a fixed axis. The potential 
energy of the system clearly does not satisfy the conditions of Proposition 1. 

Fig. 3. 



376 I. E B o r e t s k i i  a n d  O.  R.  K a y u m o v  

Let  us assume that  the weightless segments are of lengths 11 (i = 1, 2 . . . . .  n),  and that  their  masses m i are 
concentra ted at  the joints.  Then,  in the "s traightened" configuration, ((Pi = 0, i = 1, 2 . . . .  , n),  we obtain an inert ia  
matrix A(0) = S with e lements  s 0 = (lily ~=,mk), r = max ( i , j )  ( i , j  = 1, 2 . . . . .  n) .  

To continue the analysis, it is convenient  to express the matrix S in the form S = G(Cq) rNC-~G,  where G = 
d i a g  (/i), N = diag ( m i )  ( i  = 1, 2 . . . . .  n), and the auxiliary matrices are 

UI li C =  1 1 C_I  = 
- 1  1 ' 

-1  1 . 

The t ruth of  this decomposi t ion may be verified directly. 
The inverse S -1 = G-1CN-ICrG -1 is a t r idiagonal  matrix 

S - I  

- ~ l X i L 2  

-~ IXIX2  

- ~ 2 X 2 X 3  . . . ' "  

(~Ln_ I q- I.[n )~, 2 

• . 

-~tn.,Xn_lZ, n 

I.ti = l l m i ,  Xi = l / l i  ( i  = l ,  2 . . . . .  n )  

We now make  the coordinate  ql = % cyclic by transforming f rom "absolute"  angles % (measured  f rom the 
stationary axis) to the "relat ive" angles between the rods: qi = (Pi - (Pi-1 ( i  = 2, 3 . . . . .  n). The re la t ion between 
the configuration vectors is given by the formula q = C(p. 

T T T  Put ~ = (q2 . . . . .  qn) E M 1. Then q = ( (P l ,  It[/ ) . The Lagrang ianL  = l / 2 q ' T A l ( ~ ) q  " = {S/j COS ((pj - (pi)} is defined 
by the inert ia matr ix AI(~) ,  which is re la ted to the matrix for "absolute  angles" A(tp) = {sij cos (tpi - (pi)} by the 
condit ion A1 = (C-1) ar A C  -1. As  a result  the c o m e r  e lement  a n ( v )  equals the sum of  al l  e lements  of 
the matrix A(tp) (with the substitution (p = C-lq).  

A steady mot ion  ul = 0, (Pi = to, @" = 0 is possible if a B l / i ~  = 0, BI (~)  = 1/2to2[an(0) - an(@)].  The reduced 
potent ia l  B1(¥) ( t ranslat ional  forces of inertia) has a single isolated minimum at the point  V = 0. I t  follows from 
the sufficient condi t ion for  connectedness  of  the Lyapunov function [5] (Section 1) that  B1(¥) is a C L F  on M1. 

T T T  We now introduce the vector  x = (T', @ , @" ) e R x TM, where "t = (P - ~ -  The manifold R x TMl  contains a 
non-empty set ~1 = {x: T" = 0, aB1/a~J = 0, @" = 0, u = 0} of states of relative rest• 

Let  us investigate the condit ions for local controllabil i ty by a single torque in the neighbourhoods  of  points  x 
~1. The system, linearizedr in the neighbourhood of x = 0 (i.e. (p; = to, V = 0, O~" = 0), has the form A0q" = B0q + 

1 T  I T  1 hul, h = (1, 0 . . . . .  0) . In the computat ions  of  A0 = ( C - )  S C - ,  B0 = (C--) HC-  we have used the matr ix 

2 u 2rnn rl={~ ~_-:rlY. Y.*;j cos(~j -~,) 
[ ocp [.i=lj=l ",,~=o 

2 It can be verified that  H = o) (S - F),  where  F = diag ~ ) ,  (i = 1, 2 . . . . .  n), w i t h ~  = ~ 0  (J = 1, 2 . . . . .  n). 
Changing to new variables Z = S C q q  and taking into account that  Crb  B, we obtain Z'" = Dz + bul.  

I t  is well known [7] that  in such a system with non-singular matrix D the rank cri terion for controllabil i ty reduces 
to the form rank K = n, where K = lib, Db . . . . .  W'qbll.  

2 In the present  example,  D = to (I - FS -1) is tr idiagonai,  but  in the tr iangular  controllabil i ty matrix K we have 
the diagonal  e lements  k n  = 1, k i+ l , i+  1 = -kiito2fii+ll.ti~'+l~ :g: 0 (i  = 1, 2 . . . . .  n - l ) ,  so that  rank  K = n. 

This means  that  in the neighbourhood of  the point  x = 0 in R x TM1 the system is locally control lable  by the 
action of a single torque Ul. 

In the neighbourhoods of other  positions x e 41 of  relative equilibrium, analogous arguments lead to the following 
conclusion for an n-segment  pendulum outside the gravitational field: if in the inert ia matrix A(tp) = {a(/} in the 
rect i l inear configuration (when a 0 = +_so. ) the values of all row sums]} = Xa 0 (i = 1, 2 . . . . .  n)  do not  vanish (for 
all i = 2, 3 . . . . .  n), the system is locally control lable in the neighbourhood of  the appropr ia te  posit ion of  relative 
equil ibrium (co ~ 0) under  the action of  a single torque ul. 
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To simplify the discussion, let us consider the case n = 3. We will discuss conditions under which a three-segment 
system admits of  no particular solution tPi = to (excluding states x e ~1 of relative rest). Denote the point of  
suspension of the pendulum by Go and the ends of the rods (the joints) by Gt, G2, G3, respectively (Fig. 3). 

Suppose that the segment GoG1 is at relative rest when 9i = to. Then the second rod exerts a reaction force on 
the first along GoG1. Taken separately, the segment G1G2 can be at equilibrium under the reactions of the constraints 
and the d'Alembert forces only if N2 sin ~1 = 0, where N 2 is the pressure force exerted by the rod GIG2. The 
condition N2 =- 0 is equivalent to violation of  the constraint, when the third segment moves freely, i.e. rotates about 
the stationary centre of mass or is at rest in an absolute system of coordinates. This may happen only if the points 
Go and G2 are geometrically identical. 

Thus, apart from the case of states of relative equilibrium a particular integral tpi = to is possible if ¥1 = ~, 
¥" = 0, ~ = -to, when the third segment is at rest and the first two rotate in a combined configuration (the points 
G2 and G O in Fig. 3 coincide). 

Analysis of the equations of a two-segment pendulum with equal rods (n = 2, ll = 12) shows that the manifold 
¥1 = It, ~'1 = 0 is invariant with respect to Ul, i.e. rotation of superimposed rods cannot be produced by any Ul(t). 
This property cannot be neutralized by adding a third segment G2G3 at rest to the moving system, since the points 
Go and G2 are superimposed. 

Thus, the three-segment pendulum (ll = 12) admits of an invariant manifold F = {(q, q'): ¥1 = x, ~i = 0, ¥~ = --tpi}. 
The domain TM~F is open and everywhere dense in TM. 

From any initial point ql, ffl e TM~F, the system can be steered by a stabilizing control sign ul = -sign (9"1 - 
to) into the neighbourhood of points x e ~1 in a finite time, since the system has no particular solutions 7" = 0 
other than points x • 41- 

Using the logic of Proposition 2, we conclude that the domain of controllability of the pendulum under 
consideration (n = 3, ll =/2) under the action of a single torque ul is TM/F. 

By suitable choice of the quantities mi, l i (i -- 1, 2 . . . . .  n), one can completely avoid the existence of invariant 
manifolds and guarantee global controllability of a plane multi-segment pendulum outside the gravitational field 
by applying a single, arbitrarily small torque. 

We note, finally, that a physical n-segment pendulum outside the gravitational field does not admit of an invariant 
manifold as described if the centre of gravity of the second segment does not coincide with the point of suspension. 
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